Arithmoí - A Study of Mathematical Cohesiveness in Physics and Metaphysics  

Volume I, Part 1:  Mathematical Foundations and the Singularity 

Table of Contents

Introduction… 9

Acknowledgments… 10

1.1.1 - Matrix Group Theory… 11

1.1.2 - Matrix Group Properties… 13

1.1.3 - General Linear Group… 13

1.1.4 - Special Linear Group… 14

1.1.5 - Orthogonal Groups… 15

1.1.6 - The Linear Transformation… 15

1.1.7 - Group Exponentiation… 15

1.1.8 - The Singular Value Decomposition… 17

1.1.9 - The Matrix Transpose… 18

1.1.10 - Calculating the SVD… 19

1.1.11 - The Commutator… 20

1.1.12 - Complex Powers and Logarithms… 20

1.1.13 - Matrix Powers and Logarithms… 21

1.1.14 - Symmetric and Dihedral Groups… 22

1.1.15 - The Symmetric Groups… 23

1.1.16 - The Dihedral Groups… 23

1.1.17 - The Symmetric/Dihedral Isomorphism… 25

1.1.18 - The Symmetric/Dihedral Group in 3R... 25

1.1.19 - The DihedralGroup and Symmetry Transformations... 26

1.1.20 - The  Symmetry Group... 30

1.1.21 - Polygonal Rotations in U(3)… 34

1.1.22 - Hilbert Spaces… 37

1.1.23 - Geometric Visualization of the Inner Product… 42

1.1.24 - The Cartan Subalgebra of U(3)… 44

1.1.25 - The Anti-Diagonal Symmetry of the Cartan Subalgebra… 47

1.1.26 - The Symmetric/Dihedral Cone Group… 47

1.1.27 - Projective Forms… 50

1.2.1 – Tangent Spaces and Differential Forms… 56

1.2.2 - The Cyclic Trigonometric Functions and their Derivatives… 59

1.2.3 - The Dihedral Differential Forms in 3C… 62

1.2.4 - The Dihedral Differential Group in 3R... 66

1.2.5 - The Dihedral Cone Differential Group in 3C… 68

1.2.6 - The Lie Algebra and Differential Forms... 71

1.2.7 - Tangent Spaces... 76

1.2.8 - Dihedral Group Tangent Spaces... 77

1.2.9 - Numeri Mirabiles... 81

1.2.10 - Chapter 2 Summary... 95

1.3.1 - Curvature and Light... 96

1.3.2 - The Space of Angles... 98

1.3.3 - Vector Representations in Complex-Angled Space... 101

1.3.4 - Curvature... 103

1.3.5 - Circular Curvature and the Wave Equation... 109

1.3.6 - Hyperbolic Curvature... 116

1.3.7 - Complex Curvature... 122

1.3.8 - Geometric Algebra... 125

1.3.9 - The Asymptotic Light Functions... 129

1.3.10 - The Curvature of Light... 148

1.3.10 - Chapter 3 Summary… 153

1.4.1 - Matrix Group Conic Sections... 155

1.4.2 - SU(2) as the Inscribed Sphere of the Light Cone... 157

1.4.3 - The Tangent Space of the Cone... 163

1.4.4 - Null Curves and the Cone Group… 166

1.4.5 - Number Forms, Odd and Even Partition Geometry, and Minimal Elements... 176

1.4.6 - The Conic Group... 180

1.4.7 - The Axis Group... 182

1.4.8 - The  Subgroup of the Symmetric Conic Group... 186

1.4.9 - The SU(2) Subgroup of the Symmetric Conic Group... 188

1.4.10 - The Pauli Matrices Subgroup of the Symmetric Conic Group… 193

1.4.11 - Geometric Visualization of Matrix Group Conics... 195

1.4.12 - Chapter 4 Summary… 207

1.5.1 - Tangent Space Angles and Path-Connectedness in the Symmetric Cone Group... 209

1.5.2 - The Symmetric Cone Group Lie Algebra... 210

1.5.3 - The Matrix Logarithm… 211

1.5.4 - The Baker-Campbell-Hausdorff Formula... 213

1.5.5 - The Matrix-Matrix Exponential… 217

1.5.6 - The Matrix-Matrix Exponential and Smoothing the Tangent Space... 219

1.5.7 - Smoothing the Minimal Element Basis… 227

1.5.8 - The Infinite Symmetry Group and the Subtangent Space... 231

1.5.9 - Subtangent Vectors… 236

1.5.10 - Chapter 5 Summary… 239

1.6.1 - The Singularity… 240

1.6.2 - Infinite Differentiation and the Matrix Logarithm… 242

1.6.3 - Matrix-Based Infinite Integration and Differentiation… 247

1.6.4 - Harmonic Logarithms and the Infinite Subtangent Space… 255

1.6.5 - Outer Products and Infinities… 260

1.6.6 - The Alternating Harmonic Series and its Inverse Analog… 272

1.6.7 - Transformations and Representation Theory… 277

1.6.8 - Matrix Determinants and the Infinite Symmetry Group… 283

1.6.9 - The Infinite Sphere of Tangent Spaces… 284

1.6.10 - Chapter 6 Summary… 293

1.7.1 - Prime Numbers and the Geometry of the Minimal Element… 294

1.7.2 – The Geometric Primes and the Higher-Ordered Forms… 315

1.7.3 - Prime Number Theory and the Geometry of Groups… 334

1.7.4 - Primality… 349

1.7.5 - Chapter 7 Discussion and Summary... 354

1.8.1 - The Flowing Point and the Theory of Light… 359

1.8.2 - The Flowing Point of Axial Light… 359

1.8.3 - The Quantum Flowing Point… 364

1.8.4 - Relativistic Mechanics and the Unified Field… 371

1.8.5 - The Unit Invariant Mass and the Flowing Point Ideals… 389

1.8.6 - The Theory of Light… 393

1.8.7 - Chapter 8 Summary… 423

Conclusion… 425

References… 427

Index… 429